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« Research works

* Data analysis

* However, dataset has ambiguous forms..
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 Feature selection

* Collecting features as many as possible.. (S: static // D: dynamic feats )
* (S) Feature list: 86 feature set (extracted by pefile API)
* ex) Size of code, Address of entry point, etc..

* (S) 256-gram of binary file [2][3]
(S) TFIDF of strings (with readability checker) [4]
(S) TFIDF of imported DLL
(S)
(D)

* (S) Image representation [2]
* (D) Bi or Tri-gram of APl Sequence (using Cuckoo and Virus total)



 Feature selection

* Bi and Tri-gram for dynamic and 256-gram for static features [2][3]:
 Binary n-gram?
* One of the most effective and practical method for sequential data analysis
« such as natural language processing (nlp), signal or sound processing, etc
* Build “n length” tokens and count them all
« Example of 3-gram:
« for the data as follows: [apple, banana, orange, pear, mango]
« we can obtain.. [apple, banana, orange], [banana, orange, pear], [orange, pear, mango]
* it can apply for char-unit: [app, ppl, ple, leb, eba, ban, ana, nan, ana, ..., ngo]
* Then, count that tokens
» For the tokenized data [app, ppl, ple, leb, eba, ban, ana, nan, ana, ..., ngo],
* n-gram table below would be obtained

_app | ppl | ple | leb | eba | ban | ana | nan | .| ngo_
1 1 1 1 1 1 2 1 " 1



 Feature selection

* Dimension reduction with Feature Hashing from 256-gram:
* Data refined using 256-gram has more than 50,000 dimension..
* Therefore, we apply Feature Hashing to that high dimensional vector

* and obtained 1,000 ~ 10,000 dimensional vector

hash
keys function hashes

00
01
Lisa Smith -
03
04
05

John Smith

Sam Doe

Sandra Dee '
15



 Feature selection

* TFIDF of strings (with readability checker) [4]
* Using printable characters between ascii code (33~125)

* Readability checker?
* Originally, it was applied to detection of malicious javascript files
 Definition of readable words:

If it is > 70% alphabetical, has 20% < vowels < 60%, is less than 15 characters
long, and does not contain > 2 repetitions of the same character in a row.

¢ ex)
» Respectfulness (O)
* Dictionary (O)
* sdifad13202 (X)



* Feature selection
* TFIDF of imported DLL (using pefile)

Original Firat Thunk

Time Date Stamp —» 0x1034  —* GetModuleHandles,

Forwarder Chain 0x1047 =] LoadLibrary

Imported DLL Name

First Thunk ™ 0x1204 | DialogBoxParamiyy
0x1216  —» EndDialog

Original First Thunk

Time Date Stamp —» 0x1300 | RegOpenKeyExA

Forwarder Chain 0x1310 | RegCloseKey

Imported DLL Name

First Thunk

Original First Thunk

Time Date Stamp — kernel32.dll

Forwarder Chain user32.dll

Imported DLL Name advapi32.dll

Firat Thunk




 Feature selection

* TFIDF of imported DLL :

* TFIDF? Term Frequency - Inverse Document Frequency
* is a numerical statistic intended to reflect how important a word is to a document in a

collection or corpus
* That is, this method originally invented for text analysis
« For it is very useful for many types of data, we also applied it for malware detection

N
log 4

tf__=frequency of x in
df = number of documents containing

N = total number of documents

w, , = tf,

‘2 ) Ny )



 Feature selection

* Term Frequency - Inverse Document Frequency

« example)

« Given 3 sentences, (from “https://nesoy.github.io/articles/2017-11/if-idf”)

| love dogs.

* | hate dogs and knitting.
* Khnitting is my hobby and my passion.
* make a frequency table as below

I love dogs hate and | knitting is my hobby |passion
Doc1 | 1 1 1
Doc2 | 1 1 1 1 1
Doc 3 1 1 1 2 1 1
« Then, calculate the importance of each word
| love | dogs | hate | and | knitting| s my | hobby |passion
Doc 1 018 048 018
Doc2 |(0.18 0.18/0.48 0.18 0.18
Doc 3 0.18/0.18/0.48 0.950.48 0.48




 Feature selection

* Feature selection methods
» Removing features with low variance

00 01 02 03 04

 Feature selection using “SelectFromModel”
* (in scikit-learn)
« We used “ExtraTreesClassifier()”

* This method uses training algorithm itself to measure
importance of features

* Then, we could obtain 30~90 important features

* Heuristically..

* For this challenge,
we excluded time-consuming features
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* Detection algorithms

: Discriminative model : Generative model
[ | [ |
Goal m Directly estimate P(y|x) sEstimate P(z|y) to then deduce P(y|z)
| [ |
What's learned : Decision boundary :Probability distributions of the data
| / [ |
[ | / [
| |
[ | / [ |
o / 0
m / n
lllustration = /
[ |
/
[ |
. /
N / :
] / ' I _
- / « Support Vector Machine
Examples = Regressions, SVMs - Random Forest (Decision Tree)
: E B EEEEEEEEEEENE ° Gradlent BOOStlng (Ada BOOSt)

XGBoost




Detection algorithms

« Random Forest
- Gradient Boosting
« XGBoost
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def overall_Res(self, mRes, mWeight):

Detection algorithms

_ = np. ( [ '1, i5=0)
If reSUItS Of RF, GB, XGB are :::_)G(EB= n;?m:::r(]mzzzs['G):::ientgzsztoing'], axis=0)

Rn 93, 95, 97 reS eCtlvel y RF = np.multiply(sum_RF, mWeight['RandomForest'])
[/[/’n, — . . XGB = np.multiply(sum_XGB, mWeight['XGB'])
R —I_ R —|— R Wel htS Of RF IS GB = n:‘.)mr:ti;sy)(,sz:TGB, mw:i:;2['GradientBoosting'])
1 2 3

93 / (93+95+97) overall = np.sum([RF, XGB, GB], axis=0)
SUCh that, W1 + W2 + W3 = 1 return np.transpose(overall)

. (&)

Give weight of 0.6

Give weight of 0.4
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