
AI based Malware detection approach  
for KISA Data challenge 2018  

Dec 1st, 2018

Hyunsoo Kim 
aitch25@gmail.com

Assistant researcher at F1 Security

mailto:aitch25@gmail.com


• Overall Procedure

• Research works
•Data analysis

• Feature selection
•Unavailable features
•Importance features

• Detection algorithms
•Traditional approaches
•How we improve it with feedback approach 

• Index



• Overall procedure

Data with labels

Raw feature extraction

Refined features

Fe
at

ur
e 

se
le

ct
io

n

First-term training and checking  
(traditional training with voting process)

Test data

Vote for collective intelligence

Feedback for  
next-term learning

Final results

Second-term training  
as semi-supervised

Combined results of  
each ML algorithm



• Overall procedure

Data with labels

Raw feature extraction

Refined features

Fe
at

ur
e 

se
le

ct
io

n

First-term training and checking  
(traditional training with voting process)

Test data

Vote for collective intelligence

Feedback for  
next-term learning

Final results

Second-term training  
as semi-supervised

Combined results of  
each ML algorithm

Understanding 
of Data

Research about 
important features

Construction of proper 
combination of algorithm



• Overall procedure

Data with labels

Raw feature extraction

Refined features

Fe
at

ur
e 

se
le

ct
io

n

First-term training and checking  
(traditional training with voting process)

Test data

Vote for collective intelligence

Feedback for  
next-term learning

Final results

Second-term training  
as semi-supervised

Combined results of  
each ML algorithm

Understanding 
of Data

Research about 
important features



• Research works
• Data analysis
• However, dataset has ambiguous forms.. 

• Power law



• Feature selection
• Collecting features as many as possible.. (S: static // D: dynamic feats )
• (S) Feature list: 86 feature set (extracted by pefile API) 
• ex) Size of code, Address of entry point, etc..

• (S) 256-gram of binary file [2][3]
• (S) TFIDF of strings (with readability checker) [4]
• (S) TFIDF of imported DLL 
• (S) Image representation [2]
• (D) Bi or Tri-gram of API Sequence (using Cuckoo and Virus total) 



• Feature selection
• Bi and Tri-gram for dynamic and 256-gram for static features [2][3]:
• Binary n-gram?

• One of the most effective and practical method for sequential data analysis
• such as natural language processing (nlp), signal or sound processing, etc

• Build “n length” tokens and count them all 
• Example of 3-gram:

• for the data as follows: [apple, banana, orange, pear, mango]
• we can obtain.. [apple, banana, orange], [banana, orange, pear], [orange, pear, mango] 

• it can apply for char-unit: [app, ppl, ple, leb, eba, ban, ana, nan, ana, …, ngo]
• Then, count that tokens

• For the tokenized data [app, ppl, ple, leb, eba, ban, ana, nan, ana, …, ngo],
• n-gram table below would be obtained

app ppl ple leb eba ban ana nan … ngo
1 1 1 1 1 1 2 1 … 1



• Feature selection
• Dimension reduction with Feature Hashing from 256-gram:
• Data refined using 256-gram has more than 50,000 dimension..
• Therefore, we apply Feature Hashing to that high dimensional vector
• and obtained 1,000 ~ 10,000 dimensional vector



• Feature selection
• TFIDF of strings (with readability checker) [4]
• Using printable characters between ascii code (33~125)

• Readability checker? 
• Originally, it was applied to detection of malicious javascript files
• Definition of readable words: 

• ex) 
• Respectfulness (O)
• Dictionary (O)
• sdifad13202 (X)

If it is > 70% alphabetical, has 20% < vowels < 60%, is less than 15 characters 
long, and does not contain > 2 repetitions of the same character in a row. 



• Feature selection
• TFIDF of imported DLL (using pefile)



• Feature selection
• TFIDF of imported DLL : 
• TFIDF? Term Frequency - Inverse Document Frequency

• is a numerical statistic intended to reflect how important a word is to a document in a 
collection or corpus

• That is, this method originally invented for text analysis
• For it is very useful for many types of data, we also applied it for malware detection



• Term Frequency - Inverse Document Frequency
• example)

• Given 3 sentences, (from “https://nesoy.github.io/articles/2017-11/tf-idf”)
• I love dogs.
• I hate dogs and knitting.
• Knitting is my hobby and my passion.

• make a frequency table as below

• Then, calculate the importance of each word

• Feature selection



• Feature selection
• Feature selection methods
• Removing features with low variance

• Feature selection using “SelectFromModel” 
• (in scikit-learn)
• We used “ExtraTreesClassifier()”
• This method uses training algorithm itself to measure  

importance of features 
• Then, we could obtain 30~90 important features

• Heuristically.. 
• For this challenge,  

we excluded time-consuming features 



• Overall procedure

Data with labels

Raw feature extraction

Refined features

Fe
at

ur
e 

se
le

ct
io

n

First-term training and checking  
(traditional training with voting process)

Test data

Vote for collective intelligence

Feedback for  
next-term learning

Final results

Second-term training  
as semi-supervised

Combined results of  
each ML algorithm

Construction of proper 
combination of algorithm



• Detection algorithms

• Support Vector Machine
• Random Forest (Decision Tree)
• Gradient Boosting (Ada Boost)
• XGBoost



Detection algorithms

Refined features
First-term training and checking  

(traditional training with voting process)

Test data

Vote for collective intelligence

Feedback for  
next-term learning

Final results

Second-term training  
as semi-supervised

Combined results of  
each ML algorithm

• Random Forest
• Gradient Boosting
• XGBoost



Detection algorithms

Random Forest (3)

Gradient boost (3)

XG boost (3)

Obtaining final 
result and 

submission

Training Data

Test Data

calculate weight of 
each for feedback

Check 
effectiveness



Detection algorithms
If results of RF, GB, XGB are 

93, 95, 97 respectively, 
weights of RF is  
93 / (93+95+97)

Give weight of 0.6
Give weight of 0.4

Such that, W1 + W2 + W3 = 1



• [1] Kumagai, Atsutoshi, and Tomoharu Iwata. "Learning Dynamics of Decision Boundaries without 
Additional Labeled Data." Proceedings of the 24th ACM SIGKDD International Conference on Knowledge 
Discovery & Data Mining. ACM, 2018. 

• [2] Ahmadi, Mansour, et al. "Novel feature extraction, selection and fusion for effective malware family 
classification." Proceedings of the sixth ACM conference on data and application security and privacy. 
ACM, 2016. 

• [3] Raff, Edward, et al. "Malware detection by eating a whole exe." arXiv preprint arXiv:1710.09435 
(2017). 

• [4] Readability: Likarish, Peter, Eunjin Jung, and Insoon Jo. "Obfuscated malicious javascript detection 
using classification techniques." Malicious and Unwanted Software (MALWARE), 2009 4th International 
Conference on. IEEE, 2009.

• References:



• Full-references:
[1] Sejnowski, Terrence J. "Higher-order Boltzmann machines." AIP Conference Proceedings. Vol. 151. No. 1. AIP, 1986. 

[2] Hearst, Marti A., et al. "Support vector machines." IEEE Intelligent Systems and their applications 13.4 (1998): 18-28. 

[3] Friedman, Jerome H. "Greedy function approximation: a gradient boosting machine." Annals of statistics (2001): 1189-1232. 

[4] Rätsch, Gunnar, Takashi Onoda, and K-R. Müller. "Soft margins for AdaBoost." Machine learning 42.3 (2001): 287-320. 

[5] Liaw, Andy, and Matthew Wiener. "Classification and regression by randomForest." R news 2.3 (2002): 18-22. 

[6] John, George H., and Pat Langley. "Estimating continuous distributions in Bayesian classifiers." Proceedings of the Eleventh 
conference on Uncertainty in artificial intelligence. Morgan Kaufmann Publishers Inc., 1995.

[7] Chen, Tianqi, and Carlos Guestrin. "Xgboost: A scalable tree boosting system." Proceedings of the 22nd acm sigkdd 
international conference on knowledge discovery and data mining. ACM, 2016.

[8] Kumagai, Atsutoshi, and Tomoharu Iwata. "Learning Dynamics of Decision Boundaries without Additional Labeled Data." 
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2018. 

[9] https://en.wikipedia.org/wiki/Power_law. 

[10] Joachims, Thorsten. A Probabilistic Analysis of the Rocchio Algorithm with TFIDF for Text Categorization. No. CMU-
CS-96-118. Carnegie-mellon univ pittsburgh pa dept of computer science, 1996. 

[11] Lee, Daniel D., and H. Sebastian Seung. "Algorithms for non-negative matrix factorization." Advances in neural information 
processing systems. 2001. 



• Full-references:
[12] Weinberger, Kilian, et al. "Feature hashing for large scale multitask learning." arXiv preprint arXiv:0902.2206 (2009). 

[13] Likarish, Peter, Eunjin Jung, and Insoon Jo. "Obfuscated malicious javascript detection using classification techniques." 
Malicious and Unwanted Software (MALWARE), 2009 4th International Conference on IEEE, 2009. 

[14] Ahmadi, Mansour, et al. "Novel feature extraction, selection and fusion for effective malware family classification." 
Proceedings of the sixth ACM conference on data and application security and privacy. ACM, 2016. 

[15] Karthikeyan, L., G. Jacob, and B. Manjunath. "Malware images: Visualization and automatic classification." Proceedings of 
the 8th International Symposium on Visualization for Cyber Security. 2011. 

[16] Bradski, Gary, and Adrian Kaehler. "OpenCV." Dr. Dobb’s journal of software tools 3 (2000). 

[17] Raff, Edward, et al. "Malware detection by eating a whole exe." arXiv preprint arXiv:1710.09435 (2017). 



• Thank you


