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• Research works
• Data analysis
• However, dataset has ambiguous forms.. 

• Power law



• Feature selection
• Collecting features as many as possible.. (S: static // D: dynamic feats )
• (S) Feature list: 86 feature set (extracted by pefile API) 
• ex) Size of code, Address of entry point, etc..

• (S) 256-gram of binary file [2][3]
• (S) TFIDF of strings (with readability checker) [4]
• (S) TFIDF of imported DLL 
• (S) Image representation [2]
• (D) Bi or Tri-gram of API Sequence (using Cuckoo and Virus total) 



• Feature selection
• Bi and Tri-gram for dynamic and 256-gram for static features [2][3]:
• Binary n-gram?

• One of the most effective and practical method for sequential data analysis
• such as natural language processing (nlp), signal or sound processing, etc

• Build “n length” tokens and count them all 
• Example of 3-gram:

• for the data as follows: [apple, banana, orange, pear, mango]
• we can obtain.. [apple, banana, orange], [banana, orange, pear], [orange, pear, mango] 

• it can apply for char-unit: [app, ppl, ple, leb, eba, ban, ana, nan, ana, …, ngo]
• Then, count that tokens

• For the tokenized data [app, ppl, ple, leb, eba, ban, ana, nan, ana, …, ngo],
• n-gram table below would be obtained

app ppl ple leb eba ban ana nan … ngo
1 1 1 1 1 1 2 1 … 1



• Feature selection
• Dimension reduction with Feature Hashing from 256-gram:
• Data refined using 256-gram has more than 50,000 dimension..
• Therefore, we apply Feature Hashing to that high dimensional vector
• and obtained 1,000 ~ 10,000 dimensional vector



• Feature selection
• TFIDF of strings (with readability checker) [4]
• Using printable characters between ascii code (33~125)

• Readability checker? 
• Originally, it was applied to detection of malicious javascript files
• Definition of readable words: 

• ex) 
• Respectfulness (O)
• Dictionary (O)
• sdifad13202 (X)

If it is > 70% alphabetical, has 20% < vowels < 60%, is less than 15 characters 
long, and does not contain > 2 repetitions of the same character in a row. 



• Feature selection
• TFIDF of imported DLL (using pefile)



• Feature selection
• TFIDF of imported DLL : 
• TFIDF? Term Frequency - Inverse Document Frequency

• is a numerical statistic intended to reflect how important a word is to a document in a 
collection or corpus

• That is, this method originally invented for text analysis
• For it is very useful for many types of data, we also applied it for malware detection



• Term Frequency - Inverse Document Frequency
• example)

• Given 3 sentences, (from “https://nesoy.github.io/articles/2017-11/tf-idf”)
• I love dogs.
• I hate dogs and knitting.
• Knitting is my hobby and my passion.

• make a frequency table as below

• Then, calculate the importance of each word

• Feature selection



• Feature selection
• Feature selection methods
• Removing features with low variance

• Feature selection using “SelectFromModel” 
• (in scikit-learn)
• We used “ExtraTreesClassifier()”
• This method uses training algorithm itself to measure  

importance of features 
• Then, we could obtain 30~90 important features

• Heuristically.. 
• For this challenge,  

we excluded time-consuming features 
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• Detection algorithms

• Support Vector Machine
• Random Forest (Decision Tree)
• Gradient Boosting (Ada Boost)
• XGBoost
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• Gradient Boosting
• XGBoost



Detection algorithms
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Detection algorithms
If results of RF, GB, XGB are 

93, 95, 97 respectively, 
weights of RF is  
93 / (93+95+97)

Give weight of 0.6
Give weight of 0.4

Such that, W1 + W2 + W3 = 1
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