Al based Malware detection approach
for KISA Data challenge 2018

Dec 1st, 2018

Hyunsoo Kim
aitch25 @gmail.com
Assistant researcher at F1 Security

mailto:aitch25@gmail.com

Index

 (Qverall Procedure

* Research works
-Data analysis

 Feature selection
Unavailable features
*Importance features

* Detection algorithms
*Traditional approaches
*How we improve it with feedback approach

* Overall procedure

migy fER

Combined results of
each ML algorithm

Raw feature extraction

Feedback for

next-term learning

L

b [{f‘?

7
s

R

s

= A

N\
=4O @Ff//f\\\
8 < Second-term training %&
——J0 = as semi-supervised
=4O o L :
—10 3 Vote for collective intelligence
Data with labels :]S__J L@%@ % _
© o
P C Sl =
— e e == O
— =
M 7 Sy —C
Test data ®
Refined features

First-term training and checking

(traditional training with voting process) Final results

» Overall procedure

‘_ Combined results of Feedback for

. each ML algorithm next-term Iearning

8 | |

8 u | |
Ra.w feature extractior‘: '1

. 5}3
| |
: %m
O TY T
| |
| |

O
Refined features

Test data
Firat-term training and checking

(tradltloﬁal training with voting process)
|

Final results

° Ove ra” procedu re Combined results of
IS

. Feedback for
. each ML algorithm next-term learning
8 B
!

Firle.

Second-term training
as semi-supervised
B
Vote foFcollective intelligence
a

Refined features

Test data O
Firat-term training and checking

(traditioﬁal training with voting process)
|

Final results

« Research works

* Data analysis

* However, dataset has ambiguous forms..

1000

Generative

ive

i

ISCrimind

D

Power law

"l“||‘|.||!I.l|.\|\||l.tl.hm ([THAN Ll \” ‘.‘|,|4||.n...‘|.|.l| M |4.l..\|,.I‘...l..lwl.Il.l.m.'n.. s ,l.l‘.l.l‘m., TP II| SR [1 Y [T | |‘|. dile

900

800

700

600

500

400

300

200

100

0

decision boundary

T6T8°S8T9/LL ‘O8TL 8LTVLL)
8SBT 9E8TIL ‘¥S60°62609L)
9ZSS 98V 6V L ‘TTOV 6LSLYVL)
€E6T6 9ETOEL ‘6828°6CTVEL)
T98T L8LTTL ‘9S6T1°0880TL)
BTSO LEVE0L ‘ETIS OESLOL)
96TO 880969 ‘T6Z6°08T+69)
€98E'8ELT89 ‘8S6Z TE8089)
TESL '88E699 ‘9299 T814£99)
86TT 6€09S9 ‘€6C0°CTETHS9)
998t°689Z¥9 ‘T96E°ZBL0+9)
EESB 6EEGTO ‘8TIL TEVLTZI)
[22°066ST9 ‘9621 €80+T9)
8985 09209 ‘€961 €EEL009)
SES6°06C68S ‘TEIB EBELSS)
€0TZE TY6SLS 'B6TT VEOVLS)
[£89 T6SZ9S ‘9965 ¥8909S)
BESO TYT6VS ‘EEQ6 VEELYS)
SOZH ZTE8SES ‘TOEE SB6EES)
€L8L°THSTTS ‘8969°SE90CS)
[tST €E6T60S ‘9E90°98ZL0OS)
B0TZS EY8S6Y ‘EOEL 9EGEGY)
S/L88'€E6VZ8Y ‘TL6L98508Y)
EVST PP T69Y ‘B8EQT LETLOY)
[TZ9'v64SSt ‘O0ES LBBESY)
BL86 vt vy ‘€L68 LESOVY)
SPSES606CY ‘T¥r9Z 88TLZY)
E€ETTL SYP/LSTY ‘BOE9'8EBETY)
[880°96€E20¢ ‘9466 88t00%)
8 St 9P068E ‘EVOE G6ETLBE)
STTZ8'969SLE ‘TTEL 68LELE)
€88T LYETIE 'BL60 0P PO9E)
[SSS £L668VE ‘SO 060LPE)
[BTZ6° L¥OSEE ‘ETEB OVLEEE)
[s887'8622Z€ ‘86T T6E£0TE)
[€559°8¥680€ ‘89S THOLOE)
[2Z20°665SS62 ‘STE6 T69E6T)
[888E 622Z8C ‘€86Z ZHE0O8T)
[SSS£°66889Z ‘S99°266997)
[222T°0S55ST ‘8S8TE0 EV9€EST)
[68F°0022v2 ‘SB6E°€620+T)
[£558°05882C ‘€594 €¥6922)
[SZZZ TOSSTZ ‘TET ¥6SETT)
[z68S° TSTZOZ ‘886% ++200T)
[956°TO888T ‘SS98 +6898T)
[£22€2SPSLT “€ETET SYSELT)
[S689°20TZ9T ‘665 S6TO9T)
[2950°€S£8YT ‘8596 S¥89+vT)
[EZV EOVSET ‘STEE 96VEET)
[£68£°€5S022T ‘€669°9+TOZT)
[SOST ¥0OL8OT ‘990°L6490T)
[ETETS PSESE ‘OLZEYV LY PESB)
[86688 +00Z8 ‘TS66L L6008)
[2£952°55989 ‘92991 '8%£99)
[L¥€Z9°SOESS ‘TOEES 86EES)
[22066°SS6TH ‘94668'81001)
[£L695€°90982 ‘S992°66997)
[2£€24°9SZST ‘STEEQ 6VEET)
[S9+060°£06T ‘0]

 Feature selection

* Collecting features as many as possible.. (S: static // D: dynamic feats)
* (S) Feature list: 86 feature set (extracted by pefile API)
* ex) Size of code, Address of entry point, etc..

* (S) 256-gram of binary file [2][3]
(S) TFIDF of strings (with readability checker) [4]
(S) TFIDF of imported DLL
(S)
(D)

* (S) Image representation [2]
* (D) Bi or Tri-gram of APl Sequence (using Cuckoo and Virus total)

 Feature selection

* Bi and Tri-gram for dynamic and 256-gram for static features [2][3]:
 Binary n-gram?
* One of the most effective and practical method for sequential data analysis
« such as natural language processing (nlp), signal or sound processing, etc
* Build “n length” tokens and count them all
« Example of 3-gram:
« for the data as follows: [apple, banana, orange, pear, mango]
« we can obtain.. [apple, banana, orange], [banana, orange, pear], [orange, pear, mango]
* it can apply for char-unit: [app, ppl, ple, leb, eba, ban, ana, nan, ana, ..., ngo]
* Then, count that tokens
» For the tokenized data [app, ppl, ple, leb, eba, ban, ana, nan, ana, ..., ngo],
* n-gram table below would be obtained

app | ppl | ple | leb | eba | ban | ana | nan | .| ngo
1 1 1 1 1 1 2 1 " 1

 Feature selection

* Dimension reduction with Feature Hashing from 256-gram:
* Data refined using 256-gram has more than 50,000 dimension..
* Therefore, we apply Feature Hashing to that high dimensional vector

* and obtained 1,000 ~ 10,000 dimensional vector

hash
keys function hashes

00
01
Lisa Smith -
03
04
05

John Smith

Sam Doe

Sandra Dee '
15

 Feature selection

* TFIDF of strings (with readability checker) [4]
* Using printable characters between ascii code (33~125)

* Readability checker?
* Originally, it was applied to detection of malicious javascript files
 Definition of readable words:

If it is > 70% alphabetical, has 20% < vowels < 60%, is less than 15 characters
long, and does not contain > 2 repetitions of the same character in a row.

¢ ex)
» Respectfulness (O)
* Dictionary (O)
* sdifad13202 (X)

* Feature selection
* TFIDF of imported DLL (using pefile)

Original Firat Thunk

Time Date Stamp —» 0x1034 —* GetModuleHandles,

Forwarder Chain 0x1047 =] LoadLibrary

Imported DLL Name

First Thunk ™ 0x1204 | DialogBoxParamiyy
0x1216 —» EndDialog

Original First Thunk

Time Date Stamp —» 0x1300 | RegOpenKeyExA

Forwarder Chain 0x1310 | RegCloseKey

Imported DLL Name

First Thunk

Original First Thunk

Time Date Stamp — kernel32.dll

Forwarder Chain user32.dll

Imported DLL Name advapi32.dll

Firat Thunk

 Feature selection

* TFIDF of imported DLL :

* TFIDF? Term Frequency - Inverse Document Frequency
* is a numerical statistic intended to reflect how important a word is to a document in a

collection or corpus
* That is, this method originally invented for text analysis
« For it is very useful for many types of data, we also applied it for malware detection

N
log 4

tf__=frequency of x in
df = number of documents containing

N = total number of documents

w, , = tf,

‘2) Ny)

 Feature selection

* Term Frequency - Inverse Document Frequency

« example)

« Given 3 sentences, (from “https://nesoy.github.io/articles/2017-11/if-idf”)

| love dogs.

* | hate dogs and knitting.
* Khnitting is my hobby and my passion.
* make a frequency table as below

I love dogs hate and | knitting is my hobby |passion
Doc1 | 1 1 1
Doc2 | 1 1 1 1 1
Doc 3 1 1 1 2 1 1
« Then, calculate the importance of each word
| love | dogs | hate | and | knitting| s my | hobby |passion
Doc 1 018 048 018
Doc2 |(0.18 0.18/0.48 0.18 0.18
Doc 3 0.18/0.18/0.48 0.950.48 0.48

 Feature selection

* Feature selection methods
» Removing features with low variance

00 01 02 03 04

 Feature selection using “SelectFromModel”
* (in scikit-learn)
« We used “ExtraTreesClassifier()”

* This method uses training algorithm itself to measure
importance of features

* Then, we could obtain 30~90 important features

* Heuristically..

* For this challenge,
we excluded time-consuming features

Firat-term training and checking

- :
o Ove rall proced ure - Combined results of Feedback for
. each ML algorlthm next-term learning
. |
| |
Raw feature extractlor‘: \l %
~ . iﬂH
a
\\ . u 4?\—]‘)
=30 S .
——40 ! -
% o .
—
=30 E -
- | C—0 :% Vote foF-coIIectlve intellig
, 4 0 |
Data with labels 4 = .
s @ »
L O
: @ —"
4 v 10 O
y&% — O
& Test data O
o Refined features
L
L
L

(traditioﬁal training with voting process) Final results
B

* Detection algorithms

: Discriminative model : Generative model
[| [|
Goal m Directly estimate P(y|x) sEstimate P(z|y) to then deduce P(y|z)
| [|
What's learned : Decision boundary :Probability distributions of the data
| / [|
[| / [
| |
[| / [|
o / 0
m / n
lllustration = /
[|
/
[|
. /
N / :
] / ' I _
- / « Support Vector Machine
Examples = Regressions, SVMs - Random Forest (Decision Tree)
: E B EEEEEEEEEEENE ° Gradlent BOOStlng (Ada BOOSt)

XGBoost

Detection algorithms

« Random Forest
- Gradient Boosting
« XGBoost

o :
— wp i

Combined results of

each ML algorithm “

> 5

Vote for collective intelligence

v

R B
g

Refined features

First-term training and checking
(traditional training with voting process)

P

Feedback for
next-term learning

s

g

Second-term training
as semi-supervised

\ 4

@
@
o

— O

Test data @

Final results

l

Detection algorithms
Obtaining final

Random Forest (3)
Training Data Check
effectiveness
- result and
i, submission
Test Data Froads

l

def overall_Res(self, mRes, mWeight):

Detection algorithms

_ = np. (['1, i5=0)
If reSUItS Of RF, GB, XGB are :::_)G(EB= n;?m:::r(]mzzzs['G):::ientgzsztoing'], axis=0)

Rn 93, 95, 97 reS eCtlvel y RF = np.multiply(sum_RF, mWeight['RandomForest'])
[/[/’n, — . . XGB = np.multiply(sum_XGB, mWeight['XGB'])
R —I_ R —|— R Wel htS Of RF IS GB = n:‘.)mr:ti;sy)(,sz:TGB, mw:i:;2['GradientBoosting'])
1 2 3

93 / (93+95+97) overall = np.sum([RF, XGB, GB], axis=0)
SUCh that, W1 + W2 + W3 = 1 return np.transpose(overall)

. (&)

Give weight of 0.6

Give weight of 0.4

References:

[1] Kumagai, Atsutoshi, and Tomoharu Iwata. "Learning Dynamics of Decision Boundaries without

Additional Labeled Data." Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. ACM, 2018.

[2] Ahmadi, Mansour, et al. "Novel feature extraction, selection and fusion for effective malware family

classification." Proceedings of the sixth ACM conference on data and application security and privacy.
ACM, 2016.

[3] Raff, Edward, et al. "Malware detection by eating a whole exe." arXiv preprint arXiv:1710.09435
(2017).

[4] Readability: Likarish, Peter, Eunjin Jung, and Insoon Jo. "Obfuscated malicious javascript detection
using classification techniques." Malicious and Unwanted Software (MALWARE), 2009 4th International
Conference on. IEEE, 2009.

* Full-references:

[1] Sejnowski, Terrence J. "Higher—order Boltzmann machines." AIP Conference Proceedings. Vol. 151. No. 1. AIP, 1986.

[2] Hearst, Marti A., et al. "Support vector machines." IEEE Intelligent Systems and their applications 13.4 (1998): 18-28.

[3] Friedman, Jerome H. "Greedy function approximation: a gradient boosting machine." Annals of statistics (2001): 1189-1232.
[4] Rétsch, Gunnar, Takashi Onoda, and K-R. Miiller. "Soft margins for AdaBoost." Machine learning 42.3 (2001): 287-320.

[5] Liaw, Andy, and Matthew Wiener. "Classification and regression by randomForest." R news 2.3 (2002): 18-22.

[6] John, George H., and Pat Langley. "Estimating continuous distributions in Bayesian classifiers." Proceedings of the Eleventh
conference on Uncertainty in artificial intelligence. Morgan Kaufmann Publishers Inc., 1995.

[7] Chen, Tiangi, and Carlos Guestrin. "Xgboost: A scalable tree boosting system." Proceedings of the 22nd acm sigkdd
international conference on knowledge discovery and data mining. ACM, 2016.

[8] Kumagai, Atsutoshi, and Tomoharu Iwata. "Learning Dynamics of Decision Boundaries without Additional Labeled Data."
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2018.

[9] https://en.wikipedia.org/wiki/Power_law.

[10] Joachims, Thorsten. A Probabilistic Analysis of the Rocchio Algorithm with TFIDF for Text Categorization. No. CMU-
CS-96-118. Carnegie-mellon univ pittsburgh pa dept of computer science, 1996.

[11] Lee, Daniel D., and H. Sebastian Seung. "Algorithms for non-negative matrix factorization." Advances in neural information
processing systems. 2001.

* Full-references:

[12] Weinberger, Kilian, et al. "Feature hashing for large scale multitask learning." arXiv preprint arXiv:0902.2206 (2009).

[13] Likarish, Peter, Eunjin Jung, and Insoon Jo. "Obfuscated malicious javascript detection using classification techniques."
Malicious and Unwanted Software (MALWARE), 2009 4th International Conference on IEEE, 2009.

[14] Ahmadi, Mansour, et al. "Novel feature extraction, selection and fusion for effective malware family classification."
Proceedings of the sixth ACM conference on data and application security and privacy. ACM, 2016.

[15] Karthikeyan, L., G. Jacob, and B. Manjunath. "Malware images: Visualization and automatic classification." Proceedings of
the 8th International Symposium on Visualization for Cyber Security. 2011.

[16] Bradski, Gary, and Adrian Kaehler. "OpenCV." Dr. Dobb’s journal of software tools 3 (2000).
[17] Raff, Edward, et al. "Malware detection by eating a whole exe." arXiv preprint arXiv:1710.09435 (2017).

* Thank you

