CAN Network
Anomaly Detection



Agenda

Our Research

CAN Network Attack Framework
Attacks on CAN

Anomaly Detection Methods
Visualization

Conclusion and Future Work



Our Research

e CoWork! by using github
e There are three researchers in our team

e The things that we developed is the following
« CAN anomaly detection for DoS/Fuzzy/Replay Attack
e Data sequence modeling based on RNN(LSTM) algorithm
e Realtime visualization by using PyQt



Our Research
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Attack Framework

e Frequency effects

Insertions: extra packets

Erasures: missing packets

e Data: Altering packet data contents

Data replay
Data field modifications



Frequency effects

Fach ID has a fixed frequency of occurrence on the bus
The frequencies of normal packets are very consistent

Anomalies in terms of frequencies will involve additional
packets, or missing packets that were expected

The majority of attacks involve inserted packets with
specific IDs and data

Some attacks can manifest as the absence of packets that
should arrive at regular intervals



Altering packet data contents

e Many bits in each data sequence are constant

* [he second main signature of attacks is a change in the
data sequence of some |D

 The only indication of replay attack is that the data

sequence of the ID being replayed has changed from one
context to another

 The replaced data is a legitimate subsequence, but
incongruous with preceding data sequence



Attacks on CAN
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Attacks on CAN
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Attacks on CAN
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Anomaly Detection Methods

e Frequency anomaly detection

o Average/Deviation of Time Interval

e Data sequence anomaly detection
e RNN(Recurrent Neural Network) - LSTM(Long Short Term Memory)
e Data field mask by ANDing all data sequence of each ID



Anomaly Detection Methods
-
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Recurrent Neural Network
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e Save previous input data in network

e Predict next sequence from previous data
e |n our case, predict next data bytes in real can packets



Recurrent Neural Network
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Recurrent Neural Network

model = Sequential()
model.add(SimpleRNN(64, input_shape = (steps, 64)))
model.add(Dense(64))

model.compile(loss="'mse', optimizer='rmsprop', metrics=["accuracy"])

X_train feature[:,:-1,:]
y_train = featurel:,-1,:]

history = model.fit(x_train, y_train, epochs=epochs, verbose=1)

model.save("./models/rnn_model " + key + ".h5")




Weakness

e Too slow for real time detecting

e Use only in warning state

e Vehicle model is changed

e Train new model with new datasets... but not enough time :(



Actually...

e There are some tricky issues to detect anomalies like

 Joo many resources are needed to adjust deep learning to CAN network
packet

 There are some ambiguous concepts on CAN attack types

 \Very hard to speed up the rate of next data predictions based on RNN
(LSTM) and very hard to understand the algorithm :(

« Maybe there is no perfect algorithm which detects all the attack vectors at a
time



Anomaly Detection Methods
-

Modeling data sequence
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Visualization

e Environment

Python 3
Numpy
PyQt5, PyQtGraph

e Focusing on real time plotting
e Cross checking whether the detection is correct



Visualization
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Visualization
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Conclusion and Future Work

e There are many types of attack vector on CAN network

e Realtime and precision are the most important elements in
anomaly detection

e More faster data sequence predictions

e User friendly visualization tool

e [mprove the speed of detection

e Make it more easy to adopt in new vehicles
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