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Our Research

• CoWork! by using github 

• There are three researchers in our team 
• The things that we developed is the following 

• CAN anomaly detec6on for DoS/Fuzzy/Replay A@ack 
• Data sequence modeling based on RNN(LSTM) algorithm 
• Real6me visualiza6on by using PyQt



Our Research



A<ack Framework

• Frequency effects 
• Inser6ons: extra packets 
• Erasures: missing packets 

• Data: Altering packet data contents 
• Data replay 
• Data field modifica6ons



Frequency effects

• Each ID has a fixed frequency of occurrence on the bus 
• The frequencies of normal packets are very consistent 
• Anomalies in terms of frequencies will involve addi6onal 

packets, or missing packets that were expected 
• The majority of a@acks involve inserted packets with 

specific IDs and data 
• Some a@acks can manifest as the absence of packets that 

should arrive at regular intervals



Altering packet data contents

• Many bits in each data sequence are constant 
• The second main signature of a@acks is a change in the 

data sequence of some ID 
• The only indica<on of replay a(ack is that the data 

sequence of the ID being replayed has changed from one 
context to another 

• The replaced data is a legi6mate subsequence, but 
incongruous with preceding data sequence



A<acks on CAN

DoS A<ack



A<acks on CAN

Fuzzy A<ack



A<acks on CAN

Impersona2on A<ack



Anomaly Detec2on Methods

• Frequency anomaly detec2on 
• Average/Devia2on of Time Interval 

• Data sequence anomaly detec2on 
• RNN(Recurrent Neural Network) - LSTM(Long Short Term Memory) 
• Data field mask by ANDing all data sequence of each ID
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Recurrent Neural Network

• Save previous input data in network 
• Predict next sequence from previous data 
• In our case, predict next data bytes in real can packets



Recurrent Neural Network
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Recurrent Neural Network
RNN modeling by using Keras



Weakness

• Too slow for real 2me detec2ng 
• Use only in warning state 

• Vehicle model is changed 
• Train new model with new datasets… but not enough 6me :(



Actually…

• There are some tricky issues to detect anomalies like 
• Too many resources are needed to adjust deep learning to CAN network 

packet 
• There are some ambiguous concepts on CAN a@ack types 
• Very hard to speed up the rate of next data predic6ons based on RNN 

(LSTM) and very hard to understand the algorithm :( 

• Maybe there is no perfect algorithm which detects all the a@ack vectors at a 
6me
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Visualiza2on

• Environment 
• Python 3 
• Numpy 
• PyQt5, PyQtGraph 

• Focusing on real 2me ploWng 
• Cross checking whether the detec2on is correct



Visualiza2on
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Visualiza2on
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Demo



Conclusion and Future Work

• There are many types of a<ack vector on CAN network 
• Real2me and precision are the most important elements in 

anomaly detec2on 
• More faster data sequence predic2ons 
• User friendly visualiza2on tool 
• Improve the speed of detec2on 
• Make it more easy to adopt in new vehicles
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